xma.functional.bmm¶
- bmm(A: Tensor, B: Tensor, C: Tensor | None, is_A_transposed: bool = False, is_B_transposed: bool = False, alpha: float = 1, beta: float = 1, *, kernel_backend: KernelBackend | None = None) Tensor[source]¶
computes alpha * (A @ B) + beta * C`
- Parameters:
A (torch.Tensor) – A matrix
B (torch.Tensor) – B matrix
C (torch.Tensor | None) – C matrix, function returns A @ B if C is None
is_A_transposed (bool) – whether A has shape K x M. Defaults to False.
is_B_transposed (bool) – whether B has shape N x K. Defaults to False.
alpha (float) – alpha. Defaults to 1.
beta (float) – beta. Defaults to 1.
kernel_backend (KernelBackend | None) – KernelBackend
- Returns:
output tensor
- Return type:
Tensor